Comparison of Block-Lanczos and Block-Wiedemann for Solving Linear Systems in Large Factorizations

A. Kruppa

Centrum Wiskunde & Informatica Amsterdam

Workshop on Computational Number Theory 2011

Outline

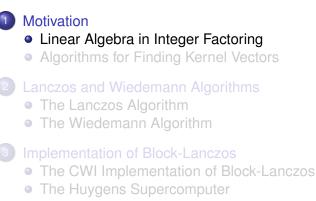
Motivation

- Linear Algebra in Integer Factoring
- Algorithms for Finding Kernel Vectors
- 2 Lanczos and Wiedemann Algorithms
 - The Lanczos Algorithm
 - The Wiedemann Algorithm
- Implementation of Block-Lanczos
 - The CWI Implementation of Block-Lanczos
 - The Huygens Supercomputer

Motivation

Lanczos and Wiedemann Algorithms Implementation of Block-Lanczos Timings Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Outline



Timings

Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Factoring with Congruent Squares

- Sieving-based factoring algorithms (QS, NFS) construct congruent squares: X² = Y² (mod N)
- If $X \not\equiv \pm Y \pmod{N}$, then gcd(X Y, N) is a proper factor
- So how do we find congruent squares?
 - Sieving step: Find a lot of relations, i.e., pairs of congruent values that both factor over a small set of primes
 - Linear Algebra step: Find a subset of them such that in the product both sides are squares

Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77

80 =	2 ⁴	\times		5 ¹	≡			3 ¹	= 3	
125 =				5 ³	\equiv	24	×	3 ¹	= 48	
160 =	2 ⁵	×		5 ¹	\equiv	2 ¹	Х	3 ¹	= 6	
162 =	2 ¹	\times	34		\equiv	2 ³			= 8	

 Want square product: all primes in even exponent. Look at exponent vectors

Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77									
80 = 125 = 160 = 162 =	4 5 1	4	1 3 1		4 1 3	1 1 1	= 3 = 48 = 6 = 8		

• Interested only in even or odd: look at exponent vectors over \mathbb{F}_2

Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77						
80 = 125 = 160 = 162 =	1	1 1 1	1 1	1 1 1	= 3 = 48 = 6 = 8	

 Find linear combination of exponent vectors over F₂ that adds to zero vector: write exponent vectors as columns of a matrix, find a kernel vector

Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77							
80 = 125 =		1 ≡ 1 ≡	-		1 1	= 3 = 48	
160 = 162 =	1 1	1 =	=	1 1	1	= 6 = 8	

• One solution: use relations $80 \equiv 3$, $160 \equiv 6$, and $162 \equiv 8 \pmod{77}$

Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77								
80 = 125 = 160 = ¹	$ \begin{array}{ccccccccccccccccccccccccccccccccc$							
160 = 1 162 = 1	$ \begin{array}{cccc} & \equiv & 1 & 1 & = 6 \\ & \equiv & 1 & = 8 \end{array} $							

- One solution: use relations $80 \equiv 3$, $160 \equiv 6$, and $162 \equiv 8 \pmod{77}$
- Product: $1440^2 \equiv 12^2 \pmod{77}$. gcd(1440 12, 77) = 7

ヘロト ヘアト ヘビト ヘビト

Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77								
80 = 125 = 160 = 162 =	1 1 1 1		1	1 1 1	= 3 = 48 = 6 = 8			

- One solution: use relations $80 \equiv 3$, $160 \equiv 6$, and $162 \equiv 8 \pmod{77}$
- Product: $1440^2 \equiv 12^2 \pmod{77}$. gcd(1440 12, 77) = 7
- Construct congruent squares from relations by finding kernel vectors of a binary matrix

イロト 不得 とくほ とくほとう

Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Shape of the Matrices

 Sparse overall (few prime factors in each relation=column), rows corresponding to small primes are heavy

RSA768

Input number of 232 digits Matrix size 192795550 \times 192796550, weight 27797115920, average column weight 144.2.

RSA190

Input number of 190 digits Matrix size 33218122×33643088 , total weight 2115794780, average column weight 62.9.

イロト イポト イヨト イヨト

э

Motivation

Lanczos and Wiedemann Algorithms Implementation of Block-Lanczos Timings Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Outline

Motivation

- Linear Algebra in Integer Factoring
- Algorithms for Finding Kernel Vectors
- Lanczos and Wiedemann Algorithms
 The Lanczos Algorithm
 - The Wiedemann Algorithm
- Implementation of Block-Lanczos
 The CWI Implementation of Block-Lanczos
 The Huygens Supercomputer

Timings

Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

Algorithms for Finding Kernel Vectors

- Gaussian Elimination, bad: $O(n^3)$, matrix fill in
- Iterative methods instead: Lanczos, Wiedemann: all O(wn²) (w average column weight)
- Both Block-Lanczos (BL) and Block-Wiedemann (BW) used in practice for factoring

Motivation

Lanczos and Wiedemann Algorithms Implementation of Block-Lanczos Timings Linear Algebra in Integer Factoring Algorithms for Finding Kernel Vectors

The RSA768 Matrix

- Was solved by BW
- Total CPU time: about 160 core years, 119 days elapsed
- Intended race BW vs. BL
- BW finished too fast, BL code was not ready
- Current project: get BL ready for RSA768 matrix, compare speed

The Lanczos Algorithm The Wiedemann Algorithm

Outline

Timings

- 4 同 5 - 4 回 5 - 4 回

The Lanczos Algorithm The Wiedemann Algorithm

The Lanczos Algorithm

- Solve Ax = y, symmetric A in $K^{n,n}$, $x \in K^n$, $y \neq 0 \in K^n$
- Our matrix *B* is not symmetric, set $A = B^T B$, compute $Av = B^T (Bv)$
- Create orthogonal base for RHS with known preimage $\{Av_1, \ldots, Av_m\}, m = \dim \mathcal{K}(A, v_1)$
- Express y in that base: $y = \sum \frac{\langle y, Av_i \rangle}{|Av_i|^2} Av_i$

• Then
$$x = \sum \frac{\langle b, Av_i \rangle}{|Av_i|^2} v_i$$
 is a solution

• Homogeneous system: find distinct x_1 , x_2 for random y, $x_1 - x_2$ is kernel vector

ヘロト ヘアト ヘビト ヘビト

The Lanczos Algorithm The Wiedemann Algorithm

The Lanczos Algorithm

The Lanczos iteration:

$$v_{i+1} = Av_i - \frac{\langle Av_i, Av_i \rangle}{\langle v_i, Av_i \rangle} v_i - \frac{\langle Av_i, Av_{i-1} \rangle}{\langle v_{i-1}, Av_{i-1} \rangle} v_{i-1}$$

- $A(Av_i)$ automatically orthogonal to Av_1, \ldots, Av_{i-2}
- Lanczos iteration orthogonalizes Av_{i+1} w.r.t. Av_i, Av_{i-1}
- Needs *m* ≈ *n* iterations, 2 matrix mul (*B^T*(*Bv_i*)), fixed number of scalar ops in each
- Problem in \mathbb{F}_2 : self-orthogonal vectors $\langle v_i, Av_i \rangle = 0$ \rightarrow zero denominator

ヘロト ヘアト ヘビト ヘビト

The Lanczos Algorithm The Wiedemann Algorithm

The Block Lanczos Algorithm

- Block Algorithm: each column vector element is itself a length-b row vector (b blocking factor, e.g, b = 128)
- Block vector V_i is basis for vector space of dim = 128
- Orthogonalize these subspaces instead of individual vectors
- Cover (almost) 128 dimensions of RHS in each iteration, need only (about) n/128 iterations
- Word-wide bit operations (+:XOR, *: AND) treat whole block element in a single instruction

イロン 不同 とくほ とくほ とう

The Lanczos Algorithm The Wiedemann Algorithm

The Block Lanczos Algorithm

Block-Lanczos uses modified iteration:

$$V_{i+1} = AV_i + V_iD_{i+1} + V_{i-1}E_{i+1} + V_{i-2}F_{i+1}$$

where D_i , E_i , F_i are 128 \times 128 matrices

- Scalar products are now F₂^{n×b} by F₂^{b×b} matrix products: complexity O(nb²), limits blocking factor
- Six such operations per iteration: 3 above, $\langle AV_i, V_i \rangle$, $\langle AV_i, AV_i \rangle$, update solution vector *X*
- Cost of AV_i is in O(nwb)
- O(n/b) iterations, total cost $O(n^2w + n^2b)$

ヘロト 人間 ト ヘヨト ヘヨト

The Lanczos Algorithm The Wiedemann Algorithm

Outline

Timings

- 4 同 5 - 4 回 5 - 4 回

The Lanczos Algorithm The Wiedemann Algorithm

The Wiedemann Algorithm

- **()** Generate Krylov sequence $u^T v$, $u^T A v$, $u^T A^2 v \dots$, $u^T A^{2n} v$
- Compute minimal polynomial f(x) s.t. f(A) = 0(Berlekamp-Massey)
- Solution Evaluate $x = (f(A)/A)v = \sum f_i A^{i-1}v$. (Can patch if $f_0 \neq 0$)
 - In principle, no auxiliary operation during (1), (3)
 - Can compute several independent Krylov sequences, makes BM harder but still acceptable
 - Evaluation can be split into independent pieces by remembering some Aⁱv from Krylov sequence

イロト 不得 とくほと くほとう

The Lanczos Algorithm The Wiedemann Algorithm

Comparison: BL and BW in Theory

Block-Lanczos

- About 2n/128 matrix-vector multiplies (half by transpose)
- **2** Total of 6 auxiliary operations of $O(b^2)$: $\langle AV_i, V_i \rangle$, $\langle AV_i, AV_i \rangle$, V_iD , $V_{i-1}E$, $V_{i-2}F$, update solution vector
- Iterations strictly sequential

Block-Wiedemann

- 3n/128 matrix-vector products (Krylov: 2n/128, evaluation: n/128). No transposes
- O auxiliary operations (in theory)
- Inherent parallelism: split Krylov sequence, evaluation

The CWI Implementation of Block-Lanczos The Huygens Supercomputer

Outline

- Lanczos and Wiedemann Algorithms
 The Lanczos Algorithm
 The Wiedemann Algorithm
- Implementation of Block-Lanczos
 The CWI Implementation of Block-Lanczos
 The Huygens Supercomputer

Timings

- 4 同 5 - 4 回 5 - 4 回

The CWI Implementation of Block-Lanczos The Huygens Supercomputer

Previous Work

- Starting point: complete implementation of Block-Lanczos by P. L. Montgomery
- Support for distributed computing with MPI
- No support for multi-threading
- Support for SSE instructions, but not AltiVec (128-bit SIMD instructions)

The CWI Implementation of Block-Lanczos The Huygens Supercomputer

MPI/Multi-Threading

- Originally parallelization only via MPI
- Not efficient for shared-memory multi-core machines, overhead
- Added Multi-threading for Av, inner products, scalar products
- On NUMA systems, worthwhile to run separate MPI tasks on each NUMA domain, ensure local accesses
- Tried lots of variants of assigning tasks to threads (e.g., splitting vectors into pieces of half width for Coppersmith multiplication to make tables fit cache) – largely unsuccessful

The CWI Implementation of Block-Lanczos The Huygens Supercomputer

Cache files

- Problem: matrix start-up very slow (reading, parsing, distributing matrix data)
- For RSA768: more than 10 hours
- Makes test/timing runs cumbersome
- Solution: dump processed matrix data to "cache files", read back on program start
- Can create cache files single-threaded, in little memory (\approx 5h)
- Cache files depend on topology
- Starting from cache files: 5 minutes

・ロト ・ 日本・ ・ 日本・

The CWI Implementation of Block-Lanczos The Huygens Supercomputer

Homogeneous Systems

- Lanczos constructs orthogonal base {*Av*₁,..., *Av_m*} for RHS (*m* = dim *K*(*A*, *v*₁))
- It orthogonalizes each new vector w.r.t. all previous ones
- If we already have complete base for subspace, new vector Av_{m+1} becomes zero
- But not necessarily $v_{m+1} = 0$, this is a useful kernel vector
- Idea works for Block-Lanczos, produces block of kernel vectors
- Eliminates storage for solution vector, 1 scalar multiply per iteration

イロト 不得 とくほ とくほ とうほ

The CWI Implementation of Block-Lanczos The Huygens Supercomputer

Small rank F

• Block-Lanczos iteration:

 $V_{i+1} = AV_i + V_iD_{i+1} + V_{i-1}E_{i+1} + V_{i-2}F_{i+1}$

- Matrix F chooses columns that were not used for computing V_i
- Number of omitted column is small, avg 0.76
- Thus rank F is small, usually < 3
- No need for O(b²) block-vector/block-matrix mult
- Find base for *F*, mul by base vectors, *O*(*b*)
- Eliminates another $O(b^2)$ operation, now only 4 left

イロン 不同 とくほ とくほ とう

The CWI Implementation of Block-Lanczos The Huygens Supercomputer

Outline

Timings

- 4 同 5 - 4 回 5 - 4 回

The CWI Implementation of Block-Lanczos The Huygens Supercomputer

History, Architecture

- IBM pSeries 575, total of 108 nodes, 16 dual-core IBM Power6 each (3456 cores total)
- Most nodes have 128GB memory, some have 256GB. Total 15.75 TB.
- Nodes are organized as 4 MCM with 4 CPUs each. Shared memory, faster within MCM
- Each node connected with 4 Infiniband links, 160 Gbit/s
- Each Power6 core has 64KB + 64KB L1, 4MB L2, shared 32MB L3 cache. 4.7 GHz clock.
- TOP500: ranked as 28th in November 2008, 303rd currently

RSA768 on Huygens

- Block-Wiedemann on Intel: CPU time: about 160 core years, 119 days elapsed
- Block-Lanczos (b = 512, homogeneous, 1 MPI job/MCM, 16 threads/MCM)

Nr. nodes	CPU	Elapsed	Elap.×cores	1
1	94.3y	612d	53.7y	
4	98.1y	210d	73.5y	
9	99.4y	123d	97.2y	
16	105y	86.8d	122y	

RSA768 on BBQ

- Compute workstation "barbecue" at CARAMEL lab, LORIA
- Quad-Hexcore (Xeon E7540), 2GHz, 512GB memory
- Hyper-Threading, 2 threads per core
- Running 4 MPI jobs (bound to node), 12 threads

b	CPU	Elapsed	Elap.×cores		Ì
256	110y	916d	60.2y		l
512	98.0y	807d	53.1y		L
512	118y	965d	63.5y	(non-homogeneous)	l

- 4 同 ト 4 三 ト 4 三

RSA190

• Size $33.2M \times 33.6M$, weight 2.1G

On Huygens				
Nr. nodes	CPU	Elapsed	Elap.×cores	
1	1.33y	9.39d	300d	

On BB	Q			
b	CPU	Elapsed	Elap.×cores	
256	344d	9.0d	216d	
512	403d	10.1d	242d	
512	423d	10.5d	252d	(non-homogeneous)

イロト 不得 とくほ とくほう

э

Conclusion

- Block-Lanczos is competitive with Block-Wiedemann if computation happens on one high-end system
- Large factorizations in a research context often use whatever resources are available often scattered
- Example: RSA768 matrix jobs ran in Lausanne, several GRID5000 sites in France, and in Tokyo
- Block-Wiedemann can make use of such scattered resources, Block-Lanczos can not

▲帰▶ ▲ 国▶ ▲ 国♪