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Factoring with Congruent Squares

Sieving-based factoring algorithms (QS, NFS) construct
congruent squares: X 2 ≡ Y 2 (mod N)

If X 6≡ ±Y (mod N), then gcd(X − Y ,N) is a proper factor
So how do we find congruent squares?

1 Sieving step: Find a lot of relations, i.e., pairs of congruent
values that both factor over a small set of primes

2 Linear Algebra step: Find a subset of them such that in the
product both sides are squares
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Constructing Congruent Squares: Example

Example: Factor 77

80 = 24 × 51 ≡ 31 = 3
125 = 53 ≡ 24 × 31 = 48
160 = 25 × 51 ≡ 21 × 31 = 6
162 = 21 × 34 ≡ 23 = 8

Want square product: all primes in even exponent. Look at
exponent vectors
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Constructing Congruent Squares: Example

Example: Factor 77

80 = 4 1 ≡ 1 = 3
125 = 3 ≡ 4 1 = 48
160 = 5 1 ≡ 1 1 = 6
162 = 1 4 ≡ 3 = 8

Interested only in even or odd: look at exponent vectors
over F2
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Constructing Congruent Squares: Example

Example: Factor 77

80 = 1 ≡ 1 = 3
125 = 1 ≡ 1 = 48
160 = 1 1 ≡ 1 1 = 6
162 = 1 ≡ 1 = 8

Find linear combination of exponent vectors over F2 that
adds to zero vector: write exponent vectors as columns of
a matrix, find a kernel vector
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Constructing Congruent Squares: Example

Example: Factor 77

80 = 1 ≡ 1 = 3
125 = 1 ≡ 1 = 48
160 = 1 1 ≡ 1 1 = 6
162 = 1 ≡ 1 = 8

One solution: use relations 80 ≡ 3, 160 ≡ 6, and 162 ≡ 8
(mod 77)
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Constructing Congruent Squares: Example

Example: Factor 77

80 = 1 ≡ 1 = 3
125 = 1 ≡ 1 = 48
160 = 1 1 ≡ 1 1 = 6
162 = 1 ≡ 1 = 8

One solution: use relations 80 ≡ 3, 160 ≡ 6, and 162 ≡ 8
(mod 77)
Product: 14402 ≡ 122 (mod 77). gcd(1440− 12,77) = 7
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Constructing Congruent Squares: Example

Example: Factor 77

80 = 1 ≡ 1 = 3
125 = 1 ≡ 1 = 48
160 = 1 1 ≡ 1 1 = 6
162 = 1 ≡ 1 = 8

One solution: use relations 80 ≡ 3, 160 ≡ 6, and 162 ≡ 8
(mod 77)
Product: 14402 ≡ 122 (mod 77). gcd(1440− 12,77) = 7
Construct congruent squares from relations by finding
kernel vectors of a binary matrix
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Shape of the Matrices

Sparse overall (few prime factors in each relation=column),
rows corresponding to small primes are heavy

RSA768
Input number of 232 digits
Matrix size 192 795 550× 192 796 550, weight 27 797 115 920,
average column weight 144.2.

RSA190
Input number of 190 digits
Matrix size 33 218 122× 33 643 088, total weight 2 115 794 780,
average column weight 62.9.
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Algorithms for Finding Kernel Vectors

Gaussian Elimination, bad: O(n3), matrix fill in
Iterative methods instead: Lanczos, Wiedemann: all
O(wn2) (w average column weight)
Both Block-Lanczos (BL) and Block-Wiedemann (BW)
used in practice for factoring
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The RSA768 Matrix

Was solved by BW
Total CPU time: about 160 core years, 119 days elapsed
Intended race BW vs. BL
BW finished too fast, BL code was not ready
Current project: get BL ready for RSA768 matrix, compare
speed
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The Lanczos Algorithm

Solve Ax = y , symmetric A in K n,n, x ∈ K n, y 6= 0 ∈ K n

Our matrix B is not symmetric, set A = BT B, compute
Av = BT (Bv)
Create orthogonal base for RHS with known preimage
{Av1, . . . ,Avm}, m = dimK(A, v1)

Express y in that base: y =
∑ 〈y ,Avi 〉

|Avi |2
Avi

Then x =
∑ 〈b,Avi 〉

|Avi |2
vi is a solution

Homogeneous system: find distinct x1, x2 for random y ,
x1 − x2 is kernel vector
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The Lanczos Algorithm

The Lanczos iteration:

vi+1 = Avi −
〈Avi ,Avi〉
〈vi ,Avi〉

vi −
〈Avi ,Avi−1〉
〈vi−1,Avi−1〉

vi−1

A(Avi) automatically orthogonal to Av1, . . . ,Avi−2

Lanczos iteration orthogonalizes Avi+1 w.r.t. Avi , Avi−1

Needs m ≈ n iterations, 2 matrix mul (BT (Bvi)), fixed
number of scalar ops in each
Problem in F2: self-orthogonal vectors 〈vi ,Avi〉 = 0
→ zero denominator

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann



Motivation
Lanczos and Wiedemann Algorithms

Implementation of Block-Lanczos
Timings

The Lanczos Algorithm
The Wiedemann Algorithm

The Block Lanczos Algorithm

Block Algorithm: each column vector element is itself a
length-b row vector (b blocking factor, e.g, b = 128)
Block vector Vi is basis for vector space of dim = 128
Orthogonalize these subspaces instead of individual
vectors
Cover (almost) 128 dimensions of RHS in each iteration,
need only (about) n/128 iterations
Word-wide bit operations (+:XOR, ∗: AND) treat whole
block element in a single instruction
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The Block Lanczos Algorithm

Block-Lanczos uses modified iteration:

Vi+1 = AVi + ViDi+1 + Vi−1Ei+1 + Vi−2Fi+1

where Di ,Ei ,Fi are 128× 128 matrices
Scalar products are now F n×b

2 by F b×b
2 matrix products:

complexity O(nb2), limits blocking factor
Six such operations per iteration: 3 above, 〈AVi ,Vi〉,
〈AVi ,AVi〉, update solution vector X
Cost of AVi is in O(nwb)
O(n/b) iterations, total cost O(n2w + n2b)
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The Wiedemann Algorithm

1 Generate Krylov sequence uT v ,uT Av ,uT A2v . . . ,uT A2nv
2 Compute minimal polynomial f (x) s.t. f (A) = 0

(Berlekamp-Massey)
3 Evaluate x = (f (A)/A)v =

∑
fiAi−1v . (Can patch if f0 6= 0)

In principle, no auxiliary operation during (1), (3)
Can compute several independent Krylov sequences,
makes BM harder but still acceptable
Evaluation can be split into independent pieces by
remembering some Aiv from Krylov sequence
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Comparison: BL and BW in Theory

Block-Lanczos
1 About 2n/128 matrix-vector multiplies (half by transpose)
2 Total of 6 auxiliary operations of O(b2): 〈AVi ,Vi〉,
〈AVi ,AVi〉, ViD, Vi−1E , Vi−2F , update solution vector

3 Iterations strictly sequential

Block-Wiedemann
1 3n/128 matrix-vector products (Krylov: 2n/128,

evaluation: n/128). No transposes
2 No auxiliary operations (in theory)
3 Inherent parallelism: split Krylov sequence, evaluation
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Previous Work

Starting point: complete implementation of Block-Lanczos
by P. L. Montgomery
Support for distributed computing with MPI
No support for multi-threading
Support for SSE instructions, but not AltiVec (128-bit SIMD
instructions)
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MPI/Multi-Threading

Originally parallelization only via MPI
Not efficient for shared-memory multi-core machines,
overhead
Added Multi-threading for Av , inner products, scalar
products
On NUMA systems, worthwhile to run separate MPI tasks
on each NUMA domain, ensure local accesses
Tried lots of variants of assigning tasks to threads (e.g.,
splitting vectors into pieces of half width for Coppersmith
multiplication to make tables fit cache) – largely
unsuccessful

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann



Motivation
Lanczos and Wiedemann Algorithms

Implementation of Block-Lanczos
Timings

The CWI Implementation of Block-Lanczos
The Huygens Supercomputer

Cache files

Problem: matrix start-up very slow (reading, parsing,
distributing matrix data)
For RSA768: more than 10 hours
Makes test/timing runs cumbersome
Solution: dump processed matrix data to “cache files”,
read back on program start
Can create cache files single-threaded, in little memory
(≈ 5h)
Cache files depend on topology
Starting from cache files: 5 minutes
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Homogeneous Systems

Lanczos constructs orthogonal base {Av1, . . . ,Avm} for
RHS (m = dimK(A, v1))
It orthogonalizes each new vector w.r.t. all previous ones
If we already have complete base for subspace, new vector
Avm+1 becomes zero
But not necessarily vm+1 = 0, this is a useful kernel vector
Idea works for Block-Lanczos, produces block of kernel
vectors
Eliminates storage for solution vector, 1 scalar multiply per
iteration
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Small rank F

Block-Lanczos iteration:
Vi+1 = AVi + ViDi+1 + Vi−1Ei+1 + Vi−2Fi+1

Matrix F chooses columns that were not used for
computing Vi

Number of omitted column is small, avg 0.76
Thus rank F is small, usually < 3
No need for O(b2) block-vector/block-matrix mult
Find base for F , mul by base vectors, O(b)
Eliminates another O(b2) operation, now only 4 left

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann



Motivation
Lanczos and Wiedemann Algorithms

Implementation of Block-Lanczos
Timings

The CWI Implementation of Block-Lanczos
The Huygens Supercomputer

Outline

1 Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

2 Lanczos and Wiedemann Algorithms
The Lanczos Algorithm
The Wiedemann Algorithm

3 Implementation of Block-Lanczos
The CWI Implementation of Block-Lanczos
The Huygens Supercomputer

4 Timings

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann



Motivation
Lanczos and Wiedemann Algorithms

Implementation of Block-Lanczos
Timings

The CWI Implementation of Block-Lanczos
The Huygens Supercomputer

History, Architecture

IBM pSeries 575, total of 108 nodes, 16 dual-core IBM
Power6 each (3456 cores total)
Most nodes have 128GB memory, some have 256GB.
Total 15.75 TB.
Nodes are organized as 4 MCM with 4 CPUs each.
Shared memory, faster within MCM
Each node connected with 4 Infiniband links, 160 Gbit/s
Each Power6 core has 64KB + 64KB L1, 4MB L2, shared
32MB L3 cache. 4.7 GHz clock.
TOP500: ranked as 28th in November 2008, 303rd
currently
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RSA768 on Huygens

Block-Wiedemann on Intel: CPU time: about 160 core
years, 119 days elapsed
Block-Lanczos (b = 512, homogeneous, 1 MPI job/MCM,
16 threads/MCM)

Nr. nodes CPU Elapsed Elap.×cores
1 94.3y 612d 53.7y
4 98.1y 210d 73.5y
9 99.4y 123d 97.2y

16 105y 86.8d 122y
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RSA768 on BBQ

Compute workstation "barbecue" at CARAMEL lab, LORIA
Quad-Hexcore (Xeon E7540), 2GHz, 512GB memory
Hyper-Threading, 2 threads per core
Running 4 MPI jobs (bound to node), 12 threads

b CPU Elapsed Elap.×cores
256 110y 916d 60.2y
512 98.0y 807d 53.1y
512 118y 965d 63.5y (non-homogeneous)
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RSA190

Size 33.2M× 33.6M, weight 2.1G

On Huygens

Nr. nodes CPU Elapsed Elap.×cores
1 1.33y 9.39d 300d

On BBQ

b CPU Elapsed Elap.×cores
256 344d 9.0d 216d
512 403d 10.1d 242d
512 423d 10.5d 252d (non-homogeneous)
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Conclusion

Block-Lanczos is competitive with Block-Wiedemann if
computation happens on one high-end system
Large factorizations in a research context often use
whatever resources are available - often scattered
Example: RSA768 matrix jobs ran in Lausanne, several
GRID5000 sites in France, and in Tokyo
Block-Wiedemann can make use of such scattered
resources, Block-Lanczos can not
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