Comparison of Block-Lanczos and
Block-Wiedemann for Solving Linear Systems
in Large Factorizations

A. Kruppa

Centrum Wiskunde & Informatica
Amsterdam

Workshop on Computational Number Theory 2011

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Outline

0 Motivation
@ Linear Algebra in Integer Factoring
@ Algorithms for Finding Kernel Vectors

@ Lanczos and Wiedemann Algorithms
@ The Lanczos Algorithm
@ The Wiedemann Algorithm

© Implementation of Block-Lanczos
@ The CWI Implementation of Block-Lanczos
@ The Huygens Supercomputer

@ Timings

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Outline

o Motivation
@ Linear Algebra in Integer Factoring

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Factoring with Congruent Squares

@ Sieving-based factoring algorithms (QS, NFS) construct
congruent squares: X2 = Y2 (mod N)

@ If X#£ +Y (mod N), then gcd(X — Y, N) is a proper factor

@ So how do we find congruent squares?

@ Sieving step: Find a lot of relations, i.e., pairs of congruent
values that both factor over a small set of primes

@ Linear Algebra step: Find a subset of them such that in the
product both sides are squares

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77

80= 24 x 51 = 31 =3
125 = 53 = 24 x 3! —48
160 = 25 x 5" = 21 «x 31 =6

162 = 21 x 34

@ Want square product: all primes in even exponent. Look at
exponent vectors

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77

go= ¢ 1= 1 =3
125 = 3 = 4 1 _y48
160 = ° = 1 1 —6
162= 1 ¢ = 3 =8

@ Interested only in even or odd: look at exponent vectors
over F»

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77

80 = = 1T =

125 = T = T —-48
160 = ! T = 1 1 _—¢
162 = ! = 1 =8

@ Find linear combination of exponent vectors over F» that
adds to zero vector: write exponent vectors as columns of
a matrix, find a kernel vector

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77

80 = = T =3
160 = 1= 1 1 _—¢
162 = 1 = =8

@ One solution: use relations 80 = 3, 160 =6, and 162 =8
(mod 77)

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77

80 = = T =3
160 = 1= 1 1 _—¢
162 = 1 = =8

@ One solution: use relations 80 = 3, 160 =6, and 162 =8
(mod 77)

@ Product: 14402 = 122 (mod 77). gcd(1440 — 12,77) = 7

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Constructing Congruent Squares: Example

Example: Factor 77

80 = = T =3
160 = 1= 1 1 _—¢
162 = 1 = =8

@ One solution: use relations 80 = 3, 160 =6, and 162 =8
(mod 77)

@ Product: 14402 = 122 (mod 77). gcd(1440 — 12,77) =7
@ Construct congruent squares from relations by finding
kernel vectors of a binary matrix

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation

Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Shape of the Matrices

@ Sparse overall (few prime factors in each relation=column),
rows corresponding to small primes are heavy

RSA768

Input number of 232 digits
Matrix size 192 795550 x 192 796 550, weight 27 797 115 920,
average column weight 144.2.

RSA190

Input number of 190 digits
Matrix size 33218 122 x 33 643 088, total weight 2115794 780,
average column weight 62.9.

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Outline

o Motivation

@ Algorithms for Finding Kernel Vectors

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

Algorithms for Finding Kernel Vectors

@ Gaussian Elimination, bad: O(n®), matrix fill in

@ lterative methods instead: Lanczos, Wiedemann: all
O(wn?) (w average column weight)

@ Both Block-Lanczos (BL) and Block-Wiedemann (BW)
used in practice for factoring

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Motivation
Linear Algebra in Integer Factoring
Algorithms for Finding Kernel Vectors

The RSA768 Matrix

@ Was solved by BW

@ Total CPU time: about 160 core years, 119 days elapsed
@ Intended race BW vs. BL

@ BW finished too fast, BL code was not ready

@ Current project: get BL ready for RSA768 matrix, compare
speed

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Lanczos and Wiedemann Algorithms The Lanczos Algorithm
The Wiedemann Algorithm

Outline

@ Lanczos and Wiedemann Algorithms
@ The Lanczos Algorithm

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Lanczos and Wiedemann Algorithms The Lanczos Algorithm
The Wiedemann Algorithm

The Lanczos Algorithm

@ Solve Ax = y, symmetric Ain K"" x e K", y £0 € K"

@ Our matrix B is not symmetric, set A = B B, compute
Av = BT(Bv)

@ Create orthogonal base for RHS with known preimage
{Avy, ..., Avpn}, m=dimK(A, vq)

@ Express y in that base: y = Y |},/4Ch|/é Av;

@ Thenx =3 ﬂ’\j"’;) v; is a solution
1

@ Homogeneous system: find distinct x4, xo for random y,
Xy — Xo is kernel vector

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Lanczos and Wiedemann Algorithms The Lanczos Algorithm
The Wiedemann Algorithm

The Lanczos Algorithm

@ The Lanczos iteration:

= o <AV,’7AV,‘> o <AV,‘,AV,‘_1> '
Vi = A (vi, Av;) v <V,'_1,Av,-_1>v’_1

@ A(Av;) automatically orthogonal to Avy,..., Av; »
@ Lanczos iteration orthogonalizes Av; ¢ w.r.t. Av;, Av;_4

@ Needs m ~ n iterations, 2 matrix mul (BT (Bv;)), fixed
number of scalar ops in each

@ Problem in F»: self-orthogonal vectors (v;, Av;) =0
— zero denominator

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Lanczos and Wiedemann Algorithms The Lanczos Algorithm
The Wiedemann Algorithm

The Block Lanczos Algorithm

@ Block Algorithm: each column vector element is itself a
length-b row vector (b blocking factor, e.g, b = 128)

@ Block vector V; is basis for vector space of dim = 128

@ Orthogonalize these subspaces instead of individual
vectors

@ Cover (almost) 128 dimensions of RHS in each iteration,
need only (about) n/128 iterations

@ Word-wide bit operations (+:XOR, x: AND) treat whole
block element in a single instruction

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Lanczos and Wiedemann Algorithms The Lanczos Algorithm
The Wiedemann Algorithm

The Block Lanczos Algorithm

@ Block-Lanczos uses modified iteration:
Vigr = AVi+ ViDit1 + Vi1 Eip1 + ViaFigq

where D;, E;, F; are 128 x 128 matrices

e Scalar products are now F5? by F2*? matrix products:
complexity O(nb?), limits blocking factor

@ Six such operations per iteration: 3 above, (AV;, V;),
(AV;, AV;)), update solution vector X

@ Cost of AV} is in O(nwb)
@ O(n/b) iterations, total cost O(nPw + nb)

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Lanczos and Wiedemann Algorithms The Lanczos Algorithm
The Wiedemann Algorithm

Outline

@ Lanczos and Wiedemann Algorithms

@ The Wiedemann Algorithm

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Lanczos and Wiedemann Algorithms The Lanczos Algorithm
The Wiedemann Algorithm

The Wiedemann Algorithm

@ Generate Krylov sequence u'v,u”Av,u" A%v ... u" A2y
@ Compute minimal polynomial f(x) s.t. f(A) =0
(Berlekamp-Massey)

© Evaluate x = (f(A)/A)v = > f,A~1v. (Can patch if fy # 0)

@ In principle, no auxiliary operation during (1), (3)

@ Can compute several independent Krylov sequences,
makes BM harder but still acceptable

@ Evaluation can be split into independent pieces by
remembering some A'v from Krylov sequence

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Lanczos and Wiedemann Algorithms The Lanczos Algorithm
The Wiedemann Algorithm

Comparison: BL and BW in Theory

Block-Lanczos

@ About 2n/128 matrix-vector multiplies (half by transpose)

@ Total of 6 auxiliary operations of O(b?): (AV;, V;),
(AV;,AV)), ViD, V;_4E, V;_oF, update solution vector

© lterations strictly sequential

Block-Wiedemann

@ 3n/128 matrix-vector products (Krylov: 2n/128,
evaluation: n/128). No transposes

@ No auxiliary operations (in theory)
© Inherent parallelism: split Krylov sequence, evaluation

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

The CWI Implementation of Block-Lanczos
Implementation of Block-Lanczos The Huygens Supercomputer

Outline

© Implementation of Block-Lanczos
@ The CWI Implementation of Block-Lanczos

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

The CWI Implementation of Block-Lanczos
Implementation of Block-Lanczos The Huygens Supercomputer

Previous Work

@ Starting point: complete implementation of Block-Lanczos
by P. L. Montgomery

@ Support for distributed computing with MPI
@ No support for multi-threading

@ Support for SSE instructions, but not AltiVec (128-bit SIMD
instructions)

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

The CWI Implementation of Block-Lanczos
Implementation of Block-Lanczos The Huygens Supercomputer

MPI/Multi-Threading

@ Originally parallelization only via MPI

@ Not efficient for shared-memory multi-core machines,
overhead

@ Added Multi-threading for Av, inner products, scalar
products

@ On NUMA systems, worthwhile to run separate MPI tasks
on each NUMA domain, ensure local accesses

@ Tried lots of variants of assigning tasks to threads (e.qg.,
splitting vectors into pieces of half width for Coppersmith
multiplication to make tables fit cache) — largely
unsuccessful

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

The CWI Implementation of Block-Lanczos
Implementation of Block-Lanczos The Huygens Supercomputer

Cache files

@ Problem: matrix start-up very slow (reading, parsing,
distributing matrix data)

@ For RSA768: more than 10 hours
@ Makes test/timing runs cumbersome

@ Solution: dump processed matrix data to “cache files”,
read back on program start

@ Can create cache files single-threaded, in litle memory
(=~ 5h)

@ Cache files depend on topology

@ Starting from cache files: 5 minutes

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

The CWI Implementation of Block-Lanczos
Implementation of Block-Lanczos The Huygens Supercomputer

Homogeneous Systems

@ Lanczos constructs orthogonal base {Avy, ..., Avpy} for
RHS (m =dim (A, vy))
@ |t orthogonalizes each new vector w.r.t. all previous ones

@ If we already have complete base for subspace, new vector
Avp,.1 becomes zero

@ But not necessarily v, 1 = 0, this is a useful kernel vector

@ |dea works for Block-Lanczos, produces block of kernel
vectors

@ Eliminates storage for solution vector, 1 scalar multiply per
iteration

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

The CWI Implementation of Block-Lanczos
Implementation of Block-Lanczos The Huygens Supercomputer

Small rank F

Block-Lanczos iteration:

Vigr = AVi+ ViDip1 + Vie1Eip1 + ViaFig
Matrix F chooses columns that were not used for
computing V;

Number of omitted column is small, avg 0.76
Thus rank F is small, usually < 3

°
°
@ No need for O(b?) block-vector/block-matrix mult
@ Find base for F, mul by base vectors, O(b)

°

Eliminates another O(b?) operation, now only 4 left

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

The CWI Implementation of Block-Lanczos
Implementation of Block-Lanczos The Huygens Supercomputer

Outline

© Implementation of Block-Lanczos

@ The Huygens Supercomputer

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

The CWI Implementation of Block-Lanczos
Implementation of Block-Lanczos The Huygens Supercomputer

History, Architecture

@ IBM pSeries 575, total of 108 nodes, 16 dual-core IBM
Power6 each (3456 cores total)

@ Most nodes have 128GB memory, some have 256GB.
Total 15.75 TB.

@ Nodes are organized as 4 MCM with 4 CPUs each.
Shared memory, faster within MCM

@ Each node connected with 4 Infiniband links, 160 Gbit/s

@ Each Power6 core has 64KB + 64KB L1, 4MB L2, shared
32MB L3 cache. 4.7 GHz clock.

@ TOP500: ranked as 28th in November 2008, 303rd
currently

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Timings

RSA768 on Huygens

@ Block-Wiedemann on Intel: CPU time: about 160 core
years, 119 days elapsed
@ Block-Lanczos (b = 512, homogeneous, 1 MPI job/MCM,

16 threads/MCM)
Nr. nodes CPU Elapsed Elap.xcores
1 943y 612d 53.7y
4 98.1y 210d 73.5y
9 99.4y 123d 97.2y

16 105y 86.8d 122y

Comparison of Block-Lanczos and Block-Wiedemann

A. Kruppa

Timings

RSA768 on BBQ

@ Compute workstation "barbecue" at CARAMEL lab, LORIA
@ Quad-Hexcore (Xeon E7540), 2GHz, 512GB memory

@ Hyper-Threading, 2 threads per core

@ Running 4 MPI jobs (bound to node), 12 threads

b CPU Elapsed Elap.xcores

256 110y 916d 60.2y
512 98.0y 807d 53.1y
512 118y 965d 63.5y (non-homogeneous)

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Timings

RSA190

@ Size 33.2M x 33.6M, weight 2.1G

On Huygens

Nr. nodes CPU Elapsed Elap.xcores
1 1.33y 9.39d 300d

On BBQ

b CPU Elapsed Elap.xcores
256 344d 9.0d 216d
512 403d 10.1d 242d
512 423d 10.5d 252d (non-homogeneous)

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

Timings

Conclusion

@ Block-Lanczos is competitive with Block-Wiedemann if
computation happens on one high-end system

@ Large factorizations in a research context often use
whatever resources are available - often scattered

@ Example: RSA768 matrix jobs ran in Lausanne, several
GRID5000 sites in France, and in Tokyo

@ Block-Wiedemann can make use of such scattered
resources, Block-Lanczos can not

A. Kruppa Comparison of Block-Lanczos and Block-Wiedemann

	Motivation
	Linear Algebra in Integer Factoring
	Algorithms for Finding Kernel Vectors

	Lanczos and Wiedemann Algorithms
	The Lanczos Algorithm
	The Wiedemann Algorithm

	Implementation of Block-Lanczos
	The CWI Implementation of Block-Lanczos
	The Huygens Supercomputer

	Timings

